2044 [Vol. 46, No. 7

BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 46, 2044—2052 (1973)

## Vibrational Assignments of Ethylmethylsilane

Michiro Hayashi, Keiichi Ohno, and Hiromu Murata Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730 (Received December 12, 1972)

The infrared spectra of ethylmethylsilane, CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, its deuterated species, CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>, and a mixture of CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, and CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub> have been measured in the gaseous, liquid, and crystalline states. The Raman spectrum of ethylmethylsilane has also been measured in the liquid state. Vibrational assignments have been made in relation to the rotational isomerism, on the basis of a modified Urey-Bradley force field, in which the force constants have been transferred from those for dimethylsilane and ethylsilane. The conclusion regarding the molecular forms of the rotational isomers, which has been obtained from the experimental evidence of the SiHD deformation vibrations for an asymmetrically-deuterated species, CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub>, can be considered to be also supported by the present results of the normal vibration calculations.

In previous notes, we have reported the existence of the rotational isomers in ethylmethylsilane<sup>1)</sup> and have determined the molecular forms of the isomers from the SiHD deformation vibrations for the asymmetrically-deuterated species, CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub>, experimentally.<sup>2)</sup> In the present paper, we will deal with the

molecular forms of the isomers and with the vibrational assignments based on the normal vibration calculation using a modified Urey-Bradley force field.

## **Experimental**

The samples of ethylmethylsilane and its deuterated species were prepared by the method of making CH<sub>3</sub>CH<sub>2</sub>MgBr react with CH<sub>3</sub>SiCl<sub>3</sub> in ethylether and by reducing the resultant CH<sub>3</sub>CH<sub>2</sub>SiCl<sub>2</sub>CH<sub>3</sub> with LiAlH<sub>4</sub>, LiAlD<sub>4</sub>, or an equimolar

<sup>1)</sup> M. Hayashi, K. Ohno, and H. Murata, This Bulletin, 45, 298 (1972).

<sup>2)</sup> M. Hayashi, K. Ohno, and H. Murata, ibid., 46, 684 (1973).

mixture of LiAlH<sub>4</sub> and LiAlD<sub>4</sub> in n-butylether.<sup>3)</sup> The purities of the samples of  $\mathrm{CH_3CH_2SiH_2CH_3}$  and  $\mathrm{CH_3CH_2SiD_2CH_3}$  were found to be better than 95% by a study of the infrared spectra and the gas chromatograph. Though the sample prepared using the mixture of LiAlH<sub>4</sub> and LiAlD<sub>4</sub> was a mixture of  $\mathrm{CH_3CH_2SiHDCH_3}$ ,  $\mathrm{CH_3CH_2SiH_2CH_3}$ , and  $\mathrm{CH_3CH_2SiD_2-CH_3}$ , it was used in the measurements without further attempts at isolation.

The infrared spectra in the region from 200 to 4000 cm<sup>-1</sup> were recorded on a Perkin-Elmer instrument (model 621) using conventional techniques.<sup>1,2)</sup> The Raman spectrum in the liquid state was measured with a JEOL Raman spectrometer.

#### Rotational Isomerism

The observed infrared and Raman spectra of ethylmethylsilane, CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, are given in Table 1. The infrared spectra of its deuterated species, CH<sub>3</sub>CH<sub>2</sub>-SiD<sub>2</sub>CH<sub>3</sub>, and the mixture of CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub>, CH<sub>3</sub>-CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, and CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub> are also given in Tables 2 and 3. As has been reported in the previous notes,1,2) from a comparison of the spectra in the gaseous and liquid states with those in the crystalline state in the region from 300 to 950 cm<sup>-1</sup>, definite evidence of the rotational isomers is obtained, as is shown in Fig. 1; that is, some of the bands existing in both the gaseous and liquid states disappear in the crystalline state. On the other hand, the existence of the isomers cannot be concluded from the spectra in the region from 950 to 1500 cm<sup>-1</sup> alone, since the infrared spectra in the liquid and crystalline states are not so much different.

### **Normal Vibration Calculation**

A normal vibration calculation based on a modified Urey-Bradley force field was carried out, with the force constants being transferred from those for dimethylsilane and ethylsilane,<sup>4)</sup> except the force constant of

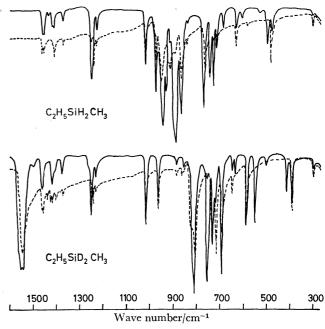



Fig. 1. The infrared spectra of ethylmethylsilane and its deuterated species, ——: in the liquid state (19 °C), -----: in the crystalline state.

Table 1. Infrared and raman spectra of  $CH_3CH_2SiH_2CH_3^{a)}$  (cm<sup>-1</sup>)

|      |              | Infra   | red  |         |      | Ra     | man  | A                                                                      |
|------|--------------|---------|------|---------|------|--------|------|------------------------------------------------------------------------|
| Gas  | Int.         | Liquid  | Int. | Crystal | Int. | Liquid | Int. | Assignment                                                             |
| 2972 | S            |         |      |         |      |        |      |                                                                        |
| 2966 | <b>s</b> .   |         |      | 2962    | m    | 2961   | m    | ٦                                                                      |
| 2962 | sh s         | 2950    | s    | 2950    | s    |        |      |                                                                        |
|      |              |         |      |         |      | 2939   | m    |                                                                        |
| 2926 | b s          | 2928    | w    | 2928    | w    | 2930   | sh m | C II et a T C                                                          |
|      |              | 2913    | w    | 2914    | m    | 2911   | S    | C-H str. T,G                                                           |
| 2896 | )            |         |      |         |      |        |      |                                                                        |
| 2890 | $\mathbf{m}$ | 2891    | w    | 2895    | m    | 2899   | S    |                                                                        |
| 2882 | J            | 2870    | m    | 2870    | w    | 2880   | S    | J                                                                      |
|      |              | 2800    | vw   | 2800    | vw   |        |      |                                                                        |
| 2150 | vs           |         |      |         |      |        |      |                                                                        |
| 2146 | vs           |         |      |         |      |        |      | SiH <sub>2</sub> str. T,G                                              |
| 2139 | vs           | 2126    | vs   | 2126    | VS   | 2137   | VS   | )                                                                      |
| 1463 | w            | 1462 sl | h m  | 1463    | m    | 1463   | s    | $ \begin{cases} CCH_3 \text{ asym. def.} \\ (A',A'') T,G \end{cases} $ |
| 1455 | w            | 1455 sl | h m  | 1455    | m    |        |      | (A',A'') T,G                                                           |
| 1444 | w            |         |      |         |      |        |      |                                                                        |
|      |              | 1437    | vw   |         |      | 1437   | sh m |                                                                        |
| 1431 | sh           |         |      |         |      | ,      |      | CH soi SiCH asym def (A'                                               |
| 1420 | }w           | 1422 s  |      | 1418    | vw   | 1423   | m    | CH <sub>2</sub> sci., SiCH <sub>3</sub> asym. def. (A', A'') T,G       |
| 1414 | J            | 1413 s  | h m  | 1410    | m    |        |      |                                                                        |
| 1385 | W            | 1377    | W    | 1373    | W    |        |      | CCH <sub>3</sub> sym. def. T,G                                         |
| 1351 | b vw         |         |      |         |      | 1000   |      |                                                                        |
|      |              |         |      |         |      | 1298   | w    |                                                                        |

<sup>3)</sup> F. S. Kipping, *Proc. Chem. Soc.*, **20**, 15 (1904); W. Dilthey, *Ber.*, **37**, 319 (1904); A. E. Finholt, A. C. Bond, Jr., and H. I. Schlesinger, *J. Amer. Chem. Soc.*, **69**, 1199 (1947).

<sup>4)</sup> K. Ohno, M. Hayashi, and H. Murata, J. Sci. Hiroshima Univ., Ser A, 36, 121 (1972).

| Infrared |                   |        |      |         |       | Raman  |              | Assignment                                              |  |
|----------|-------------------|--------|------|---------|-------|--------|--------------|---------------------------------------------------------|--|
| Gas      | Int.              | Liquid | Int. | Crystal | Int.  | Liquid | Int.         | Assignment                                              |  |
| 1266     | )                 |        |      |         |       |        |              |                                                         |  |
| 1261     | $\mathbf{m}$      | 1251   | s    | 1250    | w     | 1254   | m            | SiCH <sub>3</sub> sym. def. T,G                         |  |
| 1255     | j                 |        |      |         |       |        |              | ,                                                       |  |
| •        |                   |        |      | 1244    | m     |        |              |                                                         |  |
| 1227     | w                 | 1230   | m    | 1230    | w     | 1228   | m            | CH <sub>2</sub> wag., CH <sub>2</sub> twist. T,G        |  |
|          |                   |        |      |         |       | 1122   | vw           |                                                         |  |
| 1031     | 1                 |        |      |         |       |        |              |                                                         |  |
| 1023     | $\}_{\mathbf{m}}$ | 1021   | s    | 1021    | m     | 1022   | m            | C-C str. T,G                                            |  |
| 1016     | )                 | 1041   |      |         |       |        |              | J. 3. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.         |  |
| 983      | `                 |        |      | 981     | sh vw |        |              |                                                         |  |
| 977      | s                 | 977    | S    | 975     | m     | 971    | m            | CCH <sub>3</sub> rock. (A',A'') T,G                     |  |
| 969      | 5                 | 311    | 3    | 373     | ****  | 371    | 111          | Corra rock. (11,11 / 1,G                                |  |
| 958      | ,                 |        |      |         |       |        |              |                                                         |  |
| 952      | ****              | 946    | vs   | 952     | s     | 953    | m            | SiH <sub>2</sub> sci. T                                 |  |
| 945      | vs                | 340    | VS   | 332     | 3     | 555    | 111          | 51112 501. 1                                            |  |
| 943      | ,                 | 933    | ~    |         |       |        |              | SiH <sub>2</sub> sci. G                                 |  |
|          |                   |        | S    | 915 k   |       |        |              | 5111 <sub>2</sub> SCI. G                                |  |
| 908      |                   | 914    | vw   | 913 1   | ) 111 |        |              |                                                         |  |
|          |                   | 000    |      |         |       |        |              | C:II C                                                  |  |
| 900      | vs                | 890    | VS   |         |       |        |              | SiH <sub>2</sub> wag. G                                 |  |
| 892      | ,                 | 000    |      | 000     |       |        |              | CITE TO                                                 |  |
| 873      | m                 | 868    | S    | 869     | S     | 0.40   |              | SiH <sub>2</sub> wag. T                                 |  |
|          |                   | 840    | vw   | 841     | vw    | 842    | w            | SiCH <sub>3</sub> rock. (A") T,G                        |  |
| 772      | m                 | 770    | S    | 765     | S     | 772    | vw           | CH <sub>2</sub> rock. T                                 |  |
| 740      | )                 |        |      |         |       |        |              |                                                         |  |
| 730      | $\mathbf{m}$      | 743    | S    | 746     | S     | 741    | w            | SiCH <sub>3</sub> rock. (A') T                          |  |
| 723      | J                 | 730    | S    |         |       |        |              | SiCH <sub>3</sub> rock. (A') G, CH <sub>2</sub> rock. ( |  |
| 715      | m                 | 715    | m    | 719     | m     | 714    | m            | C-Si str. T                                             |  |
| 690      | w                 | 687    | m    |         |       | 686    | $\mathbf{m}$ | C–Si str. G                                             |  |
| 639 s    | sh w              | 630    | m    | 630     | m     | 628    | vs           | C–Si str. T                                             |  |
| 619      | w                 |        |      |         |       |        |              |                                                         |  |
|          |                   | 606    | w    |         |       |        |              | C–Si str. G                                             |  |
|          |                   | 577    | vw   | 580     | w     | 590    | m            | SiH <sub>2</sub> twist. T                               |  |
|          |                   | 530    | w    |         |       |        |              |                                                         |  |
| 492      | w                 | 498    | m    |         |       | 500    | vw           | SiH <sub>2</sub> rock. G                                |  |
| 482 s    | sh w              | 480    | m    | 480     | m     |        |              | SiH <sub>2</sub> rock. T                                |  |
|          |                   |        |      |         |       | 331    | vw           |                                                         |  |
| 294 s    | sh w              | 301    | vw   | 301     | w     | 298    | m            | C-C-Si bend. T                                          |  |
| 280      | w                 |        |      |         |       |        |              |                                                         |  |
| 215      | ? vvw             |        |      |         |       | 216    | ? vw         | CCH <sub>3</sub> torsion T,G                            |  |
|          |                   |        |      |         |       |        | ? vw         | •                                                       |  |
| 170      | ? vvw             |        |      |         |       | 167    | w            | C-Si-C bend. T                                          |  |
|          | ? w               |        |      |         |       |        |              | CH <sub>2</sub> -SiH <sub>2</sub> torsion T,G           |  |

a) Int.=intensity; s, m, w=strong, medium, weak; v=very; b=broad; sh=shoulder; T=trans isomer; and G=gauche isomer.

Table 2. Infrared spectra of  $\mathrm{CH_3CH_2SiD_2CH_3^{a)}}$  (cm<sup>-1</sup>)

|          | Infra  |      | A       |      |              |  |
|----------|--------|------|---------|------|--------------|--|
| Gas Int. | Liquid | Int. | Crystal | Int. | Assignment   |  |
| 2972 s   |        |      |         |      | )            |  |
| 2966 s   |        |      | 2964    | w    |              |  |
|          | 2951   | vs   | 2951    | m    |              |  |
| 2927 b m | 2932   | m    | 2932    | w    | C-H str. T,G |  |
|          | 2916   | m    | 2916    | w    | C-11 su. 1,G |  |
| 2905 m   |        |      |         |      |              |  |
| 2898     | 2893   | m    | 2896    | w    |              |  |
| 2889 }m  | 2874   | s    | 2871    | w    | J            |  |
| 2882     |        |      |         |      |              |  |
|          | 2828   | vvw  | 2825    | vw   |              |  |

|                                            | Infrared     | Assignment                                                                                              |  |
|--------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------|--|
| Gas Int.                                   | Liquid Int.  | Crystal Int.                                                                                            |  |
| 1561 vs                                    | 1561 sh s    | 1562 sh m                                                                                               |  |
| 1556 b vs                                  | 1552 vs      | 1549 vs $\}$ Si–D str. T,G                                                                              |  |
|                                            | 1542 vs      | J                                                                                                       |  |
|                                            | 1499 vw      | 1504 sh w                                                                                               |  |
| 1473 w                                     |              |                                                                                                         |  |
| 1466 w                                     | 1463 m       | 1463 m ) CCII array def (A/ A//) T.C.                                                                   |  |
| 1458 b w                                   | 1458 sh m    | $ \begin{array}{ccc} 1463 & m \\ 1458 & m \end{array} \right\} CCH_3 \text{ asym. def. (A', A'') T,G} $ |  |
| 1150 D W                                   |              |                                                                                                         |  |
| 1.40                                       | 1437 vw      | 1440 w                                                                                                  |  |
| 1427                                       |              | 1427 w                                                                                                  |  |
| 1417 \w                                    | 1419 m       | 1418 w $CH_2$ sci., SiCH <sub>3</sub> asym. def. (A',                                                   |  |
| 1410 sh J                                  | 1408 w       | 1403 w J A") T,G                                                                                        |  |
|                                            |              | 1386 vw                                                                                                 |  |
|                                            | 1378 m       | $1373$ w $CCH_3$ sym. def. T,G                                                                          |  |
| 1263                                       | 1263 w       |                                                                                                         |  |
| 1261 m                                     | 1251 s       | 1250 m SiCH <sub>3</sub> sym. def. T,G                                                                  |  |
| 1256                                       | <del>-</del> |                                                                                                         |  |
| •                                          |              | 1243 m                                                                                                  |  |
|                                            | 1232 m       |                                                                                                         |  |
| 1006                                       | 1232 m       | 1230 w CH <sub>2</sub> wag., CH <sub>2</sub> twist. T,G                                                 |  |
| 1026                                       | 1015         | 1014 C C . T C                                                                                          |  |
| 1018 m                                     | 1015 s       | 1014 s C–C str. T,G                                                                                     |  |
| 1010                                       |              |                                                                                                         |  |
| 966 m                                      | 963 s        | 960 s $CCH_3$ rock. $(A', A'')$ T,G                                                                     |  |
|                                            | 893 vw       | 896 vw                                                                                                  |  |
|                                            | 883 w        | 885 w                                                                                                   |  |
| 867 vw                                     |              | 863 w                                                                                                   |  |
| 007 711                                    | 852 w        | 857 w                                                                                                   |  |
| 000 1                                      | 852 w        |                                                                                                         |  |
| 820 b s                                    | 010          | 822 sh s                                                                                                |  |
| 812 s                                      | 810 vs       | 814 sh s $\left.\begin{array}{l} \text{SiCH}_3 \text{ rock. } (A', A'') \text{ T,G} \end{array}\right.$ |  |
|                                            |              | 805 vs )                                                                                                |  |
| 762 b                                      |              |                                                                                                         |  |
| 755 b \s                                   | 753 vs       | — CH <sub>2</sub> rock. G                                                                               |  |
| 749 b                                      | 730 vs       | 732 vs $CH_2$ rock. T                                                                                   |  |
| 743 s                                      |              |                                                                                                         |  |
| 741 s                                      |              |                                                                                                         |  |
| 793 )                                      | <b>7.10</b>  | THE COLUMN THE CO                                                                                       |  |
| 719 }s                                     | 719 s        | 716 vs C–Si str. T,G                                                                                    |  |
| 701                                        |              |                                                                                                         |  |
| 695 m                                      | 691 vs       | 691 vs SiD <sub>2</sub> sci. T,G                                                                        |  |
| 688                                        |              | 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                 |  |
| 653                                        |              |                                                                                                         |  |
| 643 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 644 w        | 646 m C–Si str. T                                                                                       |  |
| 0 <del>1</del> 3 )                         | 633 w        | — C–Si str. G                                                                                           |  |
| E00 ·                                      | 633 w        | — G-51 Str. G                                                                                           |  |
| 592                                        | 504          | FOT CYD TO                                                                                              |  |
| 585 m                                      | 584 s        | 587 s $SiD_2$ wag. T                                                                                    |  |
| 578 J                                      |              |                                                                                                         |  |
| 554                                        |              |                                                                                                         |  |
| 547  m                                     | 548 s        | — $\operatorname{SiD}_2$ wag. G                                                                         |  |
| 541                                        |              |                                                                                                         |  |
| 498 w                                      | 501 w        | - SiD <sub>2</sub> twist. G                                                                             |  |
| 422 sh )                                   |              | <del>-</del>                                                                                            |  |
| 412 sn m                                   | 414 s        | — SiD <sub>2</sub> rock. G                                                                              |  |
| $\frac{412}{402 \text{ sh}}$               |              | -                                                                                                       |  |
| 000                                        | 200          | 200 - CID I T                                                                                           |  |
|                                            | 390 s        | 390 s $SiD_2$ rock. T                                                                                   |  |
| 380 sh )                                   | 294 m        |                                                                                                         |  |

a) See a) of Table 1.

Table 3. Infrared spectra of the mixture of  $CH_3CH_2SiHDCH_3$ ,  $CH_3CH_2SiH_2CH_3$   $(-d_0)$ , and  $CH_3CH_2SiD_2CH_3$   $(-d_2)^a$   $(cm^{-1})$ 

| ]                  | Infrared <sup>b)</sup> |         | A                               |
|--------------------|------------------------|---------|---------------------------------|
| Liquid I           | nt. Crysta             | al Int. | Assignment                      |
| 893 sh             | S                      |         |                                 |
| $890  \mathrm{sh}$ | s 888                  | sh s    | $-d_0$                          |
| 879                | s 876                  | s       | $-\mathbf{d_0}$                 |
| $862  \mathrm{sh}$ | vs 866                 | s       | $-\mathbf{d_0}$                 |
| $856  \mathrm{sh}$ | vs 852                 | b vs    | SiHD sci. T, G                  |
| 849                | vs                     |         | SiCH <sub>3</sub> rock. T,G     |
| 808                | vs 809                 | vs      | $-d_2$                          |
| 796                | s 798                  | s       | SiCH <sub>3</sub> rock. T,G     |
| 766                | vs 765                 | S       | $CH_2$ rock. $T$ , $-d_0$       |
| 748                | vs 748                 | vs      | $CH_2$ rock. $G, -d_2$          |
| 740 sh             | s 740                  | s       | $CH_2$ rock. $G, -d_0$          |
| 726                | s 726                  | s       | C-Si str. T, G, -d <sub>2</sub> |
| 716                | s 714                  | S       | C-Si str. G, $-d_0$ , $-d_2$    |
| 687                | s 689                  | s       | $-d_0, -d_2$                    |
| 677                | m 678                  | s       | SiH def. T, G                   |
| 640                | w 640                  | w       | C–Si str. T                     |
| 624                | m 625                  | m       | $-\mathbf{d_0}$                 |
| 666                | w                      |         | C–Si str. G                     |
| 578                | m 578                  | m       | $-d_2$                          |
| 543                | m —                    |         | $-\mathbf{d_2}$                 |
| 519                | w —                    |         | SiD def. G                      |
| $508  \mathrm{sh}$ | w —                    |         | SiD def. G                      |
| 495                | m 486                  | m       | SiD def. T, $-d_0$              |
| 477                | w 477                  | m       | $-\mathbf{d}_{0}$               |
| 443                | m —                    |         | SiHD rock. G                    |
| 434                | m —                    |         | SiHD rock. G                    |
|                    | 422                    | m       | SiHD rock. T                    |
| 413                | m —                    |         | $-\mathrm{d}_2$                 |
| 390                | w 391                  | w       | $-\mathbf{d_2}$                 |
| 293                | vw 294                 | vw      | C-C-Si bend.                    |

- a) The vibrational assignments are only described for CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub>. See also a) of Table 1.
- b) The spectra were not measured in the region from 900 to 4000 cm<sup>-1</sup>.

 $F(C \cdot C \cdot Si)$ , which was adjusted in order to reproduce the observed C-C-Si bending vibration.

The Urey-Bradley force field was modified as follows:

1) the internal rotation force constants for CH<sub>3</sub>-C, CH<sub>2</sub>-Si, and Si-CH<sub>3</sub> groups were assumed to be the calculated values from the barrier heights of 3.49, 1.24, and 1.24 kcal/mol respectively; 2) the trans and gauche coupling constants between the CH<sub>3</sub> and SiH<sub>2</sub> groups, between the CH<sub>2</sub> and SiH<sub>2</sub> groups, and between the Si-C-H bendings and the C-Si-C bending were added, and these values were transferred from dimethylsilane and ethylsilane, and 3) the C-H bond interaction constant was added in order to reproduce the observed C-H stretching frequencies.

The bond lengths used in the calculation were the values transferred from those for methylsilane and ethylsilane.<sup>5)</sup> All of the valency angles were assumed to be tetrahedral.

The force constants and the observed and calculated frequencies of ethylmethylsilane are given in Tables 4—7. Since the adjustment was made only for  $F(C \cdot C \cdot Si)$ , while the other transferred force constants were fixed at the original values, relatively larger differences were found between the observed and calculated frequencies of some of the hydrogen deformation modes. However, the results of the calculation were considered still to be valid for the assignments of the observed spectra.

From the calculated potential energy distributions, considerably larger mixings of the modes were found in the following pairs of modes: 1) the CH<sub>2</sub> scissoring and CCH<sub>3</sub> symmetric deformation, 2) the SiH<sub>2</sub> wagging and SiCH<sub>3</sub> rocking, 3) the CH<sub>2</sub> rocking and SiH<sub>2</sub> twisting for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, 4) the CH<sub>2</sub> scissoring and CCH<sub>3</sub> symmetric deformation, and 5) the C–Si stretching and SiD<sub>2</sub> scissoring for CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>. The localization of the CH<sub>2</sub> rocking mode for the

Table 4. Force constants for ethylmethylsilane<sup>a)</sup>

|                                                  | ABLE 1. TORGE CONSTA | TS FOR ETHTEMETHICSHAME                                           |                 |
|--------------------------------------------------|----------------------|-------------------------------------------------------------------|-----------------|
| $K(C-H)$ , $CCH_3$                               | 4.297                | $\kappa$ (CCH <sub>3</sub> )                                      | 0.029           |
| $K(C-H), CH_2$                                   | 4.297                | $\kappa \ (\mathrm{CH_2})$                                        | -0.040          |
| K(C-H), SiCH <sub>3</sub>                        | 4.403                | $\kappa$ (SiH <sub>2</sub> )                                      | 0.104           |
| K(Si-H)                                          | 2.462                | $\kappa$ (SiCH <sub>3</sub> )                                     | 0.014           |
| $K(\mathbf{C} - \mathbf{C})$                     | 2.400                | $Y(\mathbf{C}\!\!-\!\!\mathbf{C})$                                | 0.109           |
| $K(\mathrm{Si-C})$                               | 1.991                | Y(C-Si)                                                           | 0.039           |
| $H(C-C-H)$ , $CCH_3$                             | 0.164                | $F(C \cdot C \cdot H), CCH_3$                                     | 0.470           |
| $H(H-C-H)$ , $CCH_3$                             | 0.370                | $F(\mathbf{H} \cdot \mathbf{C} \cdot \mathbf{H}), \mathbf{CCH}_3$ | 0.200           |
| H(C-C-Si)                                        | 0.087                | $F(\mathbf{C} \cdot \mathbf{C} \cdot \mathbf{Si})$                | $0.540^{\rm b}$ |
| $H(Si-C-H), CH_2$                                | 0.123                | $F(Si \cdot C \cdot H), CH_2$                                     | 0.271           |
| $H(C-C-H), CH_2$                                 | 0.278                | $F(\mathbf{C} \cdot \mathbf{C} \cdot \mathbf{H}), \mathbf{CH_2}$  | 0.540           |
| $H(H-C-H), CH_2$                                 | 0.331                | $F(\mathbf{H} \cdot \mathbf{C} \cdot \mathbf{H}), \mathbf{CH_2}$  | 0.200           |
| H(C-Si-C)                                        | 0.133                | $F\left(\mathbf{C}\cdot\mathbf{Si}\cdot\mathbf{C} ight)$          | 0.040           |
| H(C-Si-H)                                        | 0.092                | $F\left(\mathbf{C}\cdot\mathbf{Si}\cdot\mathbf{H} ight)$          | 0.149           |
| H(H-Si-H)                                        | 0.180                | $F\left(\mathbf{H} \cdot  \mathbf{Si} \cdot  \mathbf{H} ight)$    | 0.041           |
| $H(Si-C-H)$ , $SiCH_3$                           | 0.102                | $F(Si \cdot C \cdot H), SiCH_3$                                   | 0.271           |
| H(H-C-H), SiCH <sub>3</sub>                      | 0.349                | $F(\mathbf{H} \cdot \mathbf{C} \cdot \mathbf{H}), SiCH_3$         | 0.200           |
| $t(\mathrm{CH_2},\mathrm{SiH_2})^\mathrm{c_{)}}$ | 0.072                | $t(SiH_2 SiCH_3)^{c)}$                                            | 0.057           |
| $t(Si-C-H, C-Si-C)^{e}$                          | 0.030                | <i>p</i> (C–H)                                                    | -0.084          |

a) The units of the force constants are in mdyn/Å for stretching, K; bending, H; repulsion, F; and bond interaction, p; and in mdyn·Å for intramolecular tension,  $\kappa$ ; internal rotation, Y; and trans coupling, t. Force constants were transferred from dimethylsilane and ethylsilane.

b) The value was adjusted in order to reproduce the observed C-C-Si bending frequency.

c) Gauche coupling constants were assumed to be g = -0.5t.

<sup>5)</sup> M. Hayashi and C. Matsumura, This Bulletin, 45,732 (1972).

Table 5. Observed and calculated frequencies for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub> (cm<sup>-1</sup>)

Trans form Gauche form P.E.D. a) No. Obsd Calcd Obsd Calcd A 29502950 2965 2965 CCH<sub>3</sub> asym. str. A' $v_1$ 2950 2964 2950 1964 SiCH<sub>3</sub> asym. str.  $v_2$ 2928 2933 2928 2933 CH<sub>2</sub> sym. str.  $v_3$ 2913 2901 2913 2901 SiCH<sub>3</sub> sym. str.  $v_4$ 2870 2900 2870 2900 CCH<sub>3</sub> sym. str.  $v_5$ 2126 2148 2126 2148 SiH<sub>2</sub> sym. str.  $v_6$ 1462 1461 1462 1461 CCH<sub>3</sub> asym. def.  $v_7$ 1422 1429 1422 1429 CH<sub>2</sub> sci.  $\nu_8$ SiCH<sub>3</sub> asym. def. 1413 1413 1413 1413  $v_9$ 1377 CCH<sub>3</sub> sym. def.  $v_{10}$ 1377 1377 1377 1251 1254 1251 1254 SiCH<sub>3</sub> sym. def.  $v_{11}$ 1230 1189 1230 1188 CH<sub>2</sub> wag.  $v_{12}$ 1021 1021 1021 1022 C-C str.  $v_{13}$  $v_{14}$ 977 965 977 965 CCH<sub>3</sub> rock. 946 945  $v_{15}$ 948 933 SiH<sub>2</sub> sci. 890 865  $v_{16}$ 868 865 SiH<sub>2</sub> wag 743 760 730 745 SiCH<sub>3</sub> rock.  $v_{17}$ 715 714 687 711 C-Si str.  $v_{18}$ 630 656 606 644 C-Si str.  $v_{19}$ 301 301 317 C-C-Si bend.  $v_{20}$ 167 186 187 C-Si-C bend.  $v_{21}$ 2950 2975 A 2950 2975 CH<sub>2</sub> antisym. str.  $v_{22}$ 2950 2964 2950 2964 CCH<sub>3</sub> asym. str.  $v_{23}$ 2950 2959 2950 2959 SiCH<sub>3</sub> asym. str.  $v_{24}$ 2126 2148 2126 2148 SiH<sub>2</sub> antisym. str. V25 1455 1458 1455 1458 CCH<sub>3</sub> asym. def.  $v_{26}$ SiCH<sub>3</sub> asym. def. 1413 1413 1413 1413  $v_{27}$ CH<sub>2</sub> twist. 1230 1244 1230 1248  $v_{28}$ 977 977 968 CCH<sub>3</sub> rock. 975  $v_{29}$ 840 840 840 840 SiCH<sub>3</sub> rock.  $v_{30}$ CH<sub>2</sub> rock. 770 790 730 758  $v_{31}$ SiH<sub>2</sub> twist. 577 594 622  $v_{32}$ 498 498 SiH<sub>2</sub> rock. 480 487  $v_{33}$ 215 250 C-CH<sub>3</sub> torsion 243  $v_{34}$ 147 144 Si-CH<sub>3</sub> torsion  $v_{35}$ 87 65 67 CH<sub>2</sub>-SiH<sub>2</sub> torsion  $v_{36}$ 

gauche form was worse than that for the trans form.

For the SiHD deformation modes of SiHDCl<sub>2</sub> and (CH<sub>3</sub>)<sub>2</sub>SiHD, it was found that the SiHD wagging and twisting modes should be more properly called the SiH and SiD deformation modes respectively, while the SiHD scissoring and rocking modes keep their original modes.<sup>4</sup>) In CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub>, the situation was nearly the same as in SiHDCl<sub>2</sub> and (CH<sub>3</sub>)<sub>2</sub>SiHD for the SiHD rocking and SiD deformation modes, while the SiHD scissoring and SiH deformation modes were different and were considerably mixed with the C–Si stretching, CH<sub>2</sub> rocking, and SiCH<sub>3</sub> rocking modes.

# Molecular Forms and Vibrational Assignments

The infrared spectra of ethylmethylsilane in the region from 1000 to 1500 cm<sup>-1</sup> are not much different in the

Table 6. Observed and calculated frequencies for CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub> (cm<sup>-1</sup>)

|                    | No.             | Tran. | form  | Gauch      | form  | P.E.D. <sup>a)</sup>                      |
|--------------------|-----------------|-------|-------|------------|-------|-------------------------------------------|
|                    | 110.            | Obsd  | Calcd | Obsd       | Calcd | 1.E.D.                                    |
| A'                 | $\nu_1$         | 2951  | 2965  | A 2951     | 2965  | CCH <sub>3</sub> asym. str.               |
|                    | $\nu_2$         | 2951  | 2964  | 2951       | 2964  | SiCH <sub>3</sub> asym. str.              |
|                    | $v_3$           | 2932  | 2933  | 2932       | 2933  | CH <sub>2</sub> sym. str.                 |
|                    | $v_4$           | 2916  | 2901  | 2916       | 2901  | SiCH <sub>3</sub> sym. str.               |
|                    | $v_5$           | 2874  | 2900  | 2874       | 2900  | CCH <sub>3</sub> sym. str.                |
|                    | $v_6$           | 1542  | 1537  | 1542       | 1537  | SiD <sub>2</sub> sym. str.                |
|                    | $v_7$           | 1463  | 1461  | 1463       | 1461  | CCH <sub>3</sub> asym. def.               |
|                    | $\nu_8$         | 1419  | 1428  | 1419       | 1429  | CH <sub>2</sub> sci.                      |
|                    | $v_9$           | 1408  | 1413  | 1408       | 1413  | SiCH <sub>3</sub> asym. def.              |
|                    | $v_{10}$        | 1378  | 1377  | 1378       | 1377  | CCH <sub>3</sub> sym. def.                |
|                    | $v_{11}$        | 1251  | 1254  | 1251       | 1254  | SiCH <sub>3</sub> sym. def.               |
|                    | $v_{12}$        | 1232  | 1189  | 1232       | 1188  | $CH_2$ wag.                               |
|                    | $v_{13}$        | 1015  | 1020  | 1015       | 1020  | C-C str.                                  |
|                    | $v_{14}$        | 963   | 964   | 963        | 964   | $CCH_3$ rock.                             |
|                    | $v_{15}$        | 810   | 819   | 810        | 818   | SiCH <sub>3</sub> rock.                   |
|                    | $v_{16}$        | 719   | 731   | 719        | 721   | C–Si str.                                 |
|                    | $v_{17}$        | 691   | 698   | 691        | 688   | $SiD_2$ sci.                              |
|                    | $v_{18}$        | 644   | 638   | 633        | 629   | C-Si <sub>2</sub> str.                    |
|                    | $v_{19}$        | 584   | 579   | 548        | 572   | $SiD_2$ wag.                              |
|                    | $v_{20}$        | 294   | 297   | ********** | 305   | C-C-Si bend.                              |
|                    | $v_{21}$        |       | 184   |            | 186   | C-Si-C bend.                              |
| $A^{\prime\prime}$ | $v_{22}$        | 2951  | 2975  | A 2951     | 2975  | CH <sub>2</sub> antisym. str.             |
|                    | $v_{23}$        | 2951  | 2964  | 2951       | 2964  | CCH <sub>3</sub> asym. str.               |
|                    | $v_{24}$        | 2951  | 2959  | 2951       | 2959  | SiCH <sub>3</sub> asym. str.              |
|                    | $v_{25}$        | 1552  | 1552  | 1552       | 1552  | SiD <sub>2</sub> antisym. str.            |
|                    | $v_{26}$        | 1458  | 1458  | 1458       | 1458  | CCH <sub>3</sub> asym. def.               |
|                    | $v_{27}$        | 1408  | 1413  | 1408       | 1413  | SiCH <sub>3</sub> asym. def.              |
|                    | $\nu_{28}$      | 1232  | 1243  | 1232       | 1247  | CH <sub>2</sub> twist.                    |
|                    | $v_{29}$        | 963   | 971   | 963        | 963   | $CCH_3$ rock.                             |
|                    | $v_{30}$        | 810   | 816   | 810        | 816   | SiCH <sub>3</sub> rock.                   |
|                    | $v_{31}$        | 730   | 761   | 753        | 750   | CH <sub>2</sub> rock.                     |
|                    | $v_{32}$        |       | 451   | 501        | 464   | SiD <sub>2</sub> twist.                   |
|                    | v <sub>33</sub> | 390   | 392   | 414        | 406   | SiD <sub>2</sub> rock.                    |
|                    | v <sub>34</sub> |       | 239   | -          | 246   | C-CH <sub>3</sub> torsion                 |
|                    | $v_{35}$        |       | 146   |            | 144   | Si-CH <sub>3</sub> torsion                |
|                    |                 |       | 64    |            | 65    | CH <sub>2</sub> -SiD <sub>2</sub> torsion |

a) See a) of Table 5.

liquid and crystalline states; also, they are close to the superposition of the spectra of ethylsilane and methylsilane. The results of the calculations indicate that, as the coupling between the ethyl and methyl groups seems to be negligible, the calculated frequencies for the trans and gauche forms are essentially identical with each other. Therefore, the assignments of the observed spectra in this region can easily be obtained from the reported assignments for ethylsilane and methylsilane, without regard to the rotational isomerism.

On the other hand, it can be expected from the calculation that spectra sensitive to the molecular forms of the isomers exist in the region from 650 to 1000 cm<sup>-1</sup>. Actually, in this region, ten infrared bands are observed in the liquid state for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, while four of them disappear in the crystalline state. For CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>, six infrared bands are observed in the liquid state; one of them disappears in the

a) Only the predominant symmetry coordinates are shown.

Table 7. Observed and calculated frequencies for CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub><sup>a)</sup> (cm<sup>-1</sup>)

| No.                     | Trans | s form | Gauche fo   | orm (G)b) | Gauche fo | orm (G') <sup>c)</sup> | P.E.D.d)                      |
|-------------------------|-------|--------|-------------|-----------|-----------|------------------------|-------------------------------|
| 1,0,                    | Obsd  | Calcd  | Obsd        | Calcd     | Obsd      | Calcd                  |                               |
| $\overline{A}$ $v_{21}$ |       | 974    | -           | 965       |           | 965                    | CCH <sub>3</sub> rock.        |
| $\nu_{22}$              |       | 965    |             | 964       |           | 964                    | $CCH_3$ rock.                 |
| $\nu_{23}$              | 856   | 857    | 856         | 858       | 856       | 857                    | SiHD sci.                     |
| $v_{24}$                | 849   | 843    | 849         | 844       | 849       | 838                    | SiCH <sub>3</sub> rock.       |
| $v_{25}$                | 796   | 810    | <b>7</b> 96 | 811       | 796       | 810                    | $SiCH_3$ rock.                |
| $v_{26}$                | 766   | 776    | 740         | 739       | 748       | 754                    | $CH_2$ rock.                  |
| $v_{27}$                | 726   | 732    | 726         | 736       | 716       | 721                    | C-Si str.                     |
| $v_{28}$                | 677   | 689    | 677         | 682       | 677       | 699                    | SiH def.                      |
| $v_{29}$                | 640   | 654    | 616         | 642       | 616       | 642                    | C-Si str.                     |
| $v_{30}$                | 486   | 489    | 519         | 503       | 508       | 496                    | SiD def.                      |
| $v_{31}$                | 422   | 422    | 443         | 438       | 434       | 430                    | SiHD rock.                    |
| $v_{32}$                | 293   | 299    |             | 307       |           | 315                    | C-C-Si bend.                  |
| $v_{33}$                | -     | 241    |             | 248       |           | 248                    | C-CH <sub>3</sub> torsion     |
| $v_{34}$                | -     | 185    |             | 187       | -         | 186                    | C-Si-C bend.                  |
| $v_{35}$                |       | 146    |             | 144       |           | 144                    | Si-CH <sub>3</sub> torsion    |
| $v_{36}$                |       | 65     |             | 66        |           | 66                     | CH <sub>2</sub> -SiHD torsion |

- a) The calculated frequencies for the other vibrations are omitted in the Table.
- b) The CCH<sub>3</sub> group occupies the trans position to the deuterium of the SiHD group.
- c) The CCH<sub>3</sub> group occupies the trans position to the hydrogen of the SiHD group.
- d) Only the predominant symmetry coordinates are shown.

crystalline state.

For CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, the strong infrared band at 977 cm<sup>-1</sup> and the pairs of strong bands around 940 and around 879 cm<sup>-1</sup> are easily assigned to the CCH<sub>3</sub> rocking, SiH<sub>2</sub> scissoring, and SiH<sub>2</sub> wagging modes respectively, since the band at 940 cm<sup>-1</sup> and the pair of bands around 879 cm<sup>-1</sup> are not observed for CH<sub>3</sub>-CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>, and since the CCH<sub>3</sub> rocking modes are observed at 979 cm<sup>-1</sup> for ethylsilane, and the SiH<sub>2</sub> scissoring and wagging modes are observed at 959 and 919 cm<sup>-1</sup> for dimethylsilane.

There are a weak infrared band at 840 cm<sup>-1</sup>, a strong band at 770 cm<sup>-1</sup>, and two pairs of strong bands around 736 cm<sup>-1</sup> and around 700 cm<sup>-1</sup>, which correspond to the weak Raman bands at 842, 772, and 741 cm<sup>-1</sup> and two medium bands around 700 cm<sup>-1</sup> respectively, while the lower-frequency infrared bands of the two pairs disappear in the crystalline state.

On the basis of a comparison of the spectra with those for methylsilane, ethylsilane, and dimethylsilane, they can be assigned to the CH<sub>2</sub> rocking, SiCH<sub>3</sub> rocking of the A' and A" species, and asymmetric C-Si stretching modes. That is, since the averaged frequency of the observed SiCH<sub>3</sub> rocking modes of the A<sub>1</sub> and B<sub>1</sub> species for dimethylsilane is about 780 cm<sup>-1</sup>, either the band at 770 cm<sup>-1</sup> or the pair of the bands around 736 cm<sup>-1</sup> may be the SiCH<sub>3</sub> rocking modes of the A' species for both the trans and gauche isomers, while the weak band at 840 cm<sup>-1</sup> can be assigned to the SiCH<sub>3</sub> rocking modes of the A" species for both isomers, since the averaged frequency of the SiCH<sub>3</sub> rocking modes of the A<sub>2</sub> and B<sub>2</sub> species for dimethylsilane is about 840 cm<sup>-1</sup>. On the other hand, since the CH<sub>2</sub> rocking mode is found at 764 cm<sup>-1</sup> for ethylsilane, the CH<sub>2</sub> rocking mode can also be expected in this region for the SiCH<sub>3</sub> rocking mode.

As the calculated frequencies of the CH<sub>2</sub> rocking mode

are 790 cm<sup>-1</sup> for the *trans* form and 758 cm<sup>-1</sup> for the *gauche* form, while those of the SiCH<sub>3</sub> rocking mode are 760 and 745 cm<sup>-1</sup>, the band at 770 cm<sup>-1</sup> can be assigned to the CH<sub>2</sub> rocking mode for the *trans* isomer, the higher frequency band (743 cm<sup>-1</sup>) of the pair can be assigned to the SiCH<sub>3</sub> rocking mode for the *trans* isomer, and the lower-frequency band (730 cm<sup>-1</sup>) of the pair can be regarded as the overlapping band of the SiCH<sub>3</sub> rocking and CH<sub>2</sub> rocking modes for the *gauche* isomer.

The pair around 700 cm<sup>-1</sup> can be easily assigned to the asymmetric C-Si stretching mode for the *trans* and *gauche* isomers, since the mode is to be expected in the range of 695—805 cm<sup>-1</sup>, as has already been pointed out by Janz and Mikawa,<sup>6)</sup> and since the corresponding mode can be found at 728 cm<sup>-1</sup> for dimethylsilane.

For CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>, three independent infrared bands at 810, 719, and 691 cm<sup>-1</sup> and a pair of strong bands around 742 cm<sup>-1</sup> are observed in the liquid state, while the higher-frequency band of the pair disappears in the crystalline state.

Since the SiCH<sub>3</sub> rocking modes are found around  $800~\rm cm^{-1}$  for the analogous deuterated molecules such as dimethylsilane, the band at  $810~\rm cm^{-1}$ , which shows a complicated pattern in the crystalline state, may be assigned to the overlapping band of the SiCH<sub>3</sub> rocking modes of the A' and A'' species.

Although the above assignments seem questionable at first glance from the fact that the corresponding modes of the A' and A'' species for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub> are greatly separated from each other, it may be understood that the SiCH<sub>3</sub> rocking modes of the A' species at 743 and 730 cm<sup>-1</sup> for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub> are pushed down by the SiH<sub>2</sub> wagging modes at 868 and 890 cm<sup>-1</sup>, since the calculation shows that the larger mode mixing

<sup>6)</sup> G. J. Janz and Y. Mikawa, This Bulletin, 34, 1495 (1961).

is found between these modes, while the SiCH<sub>3</sub> rocking modes of the A" species at 840 cm<sup>-1</sup> stay at the original frequency. On the other hand, for CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>, both of the two SiCH<sub>3</sub> rocking modes, belonging to the A' and A" species, exist in the 800—830 cm<sup>-1</sup> region, outside the influence of the SiD<sub>2</sub> hydrogen deformation modes which exist in the far lower frequency region, as the calculations indicate.

From the results of the calculations and the comparison of the spectra for CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub> with those for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, the pair of the bands around 742 cm<sup>-1</sup> and the two bands at 719 and 691 cm<sup>-1</sup> can be assigned to the CH<sub>2</sub> rocking, C–Si asymmetric stretching, and SiD<sub>2</sub> scissoring modes respectively.

It is noticeable that the CH<sub>2</sub> rocking mode for the trans isomer has a higher frequency than that for the gauche isomer for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, while they are the reverse in frequency for CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>. This is understandable for the following reasons, obtained by an examination of the calculated potential energy distributions.

First of all, for the *trans* form, from the symmetry the coupling is possible between the modes belonging to the same species. Therefore, the CH<sub>2</sub> rocking mode for the *trans* form is pushed up by the SiH<sub>2</sub> twisting mode for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, while the corresponding mode stays at the unaffected frequency for CH<sub>3</sub>CH<sub>2</sub>-SiD<sub>2</sub>CH<sub>3</sub> since the SiD<sub>2</sub> twisting mode goes to a far lower frequency.

However, for the gauche form, as the molecular symmetry is lowered, coupling is possible between all of the modes. For CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, the CH<sub>2</sub> rocking mode, which is influenced by the SiH2 twisting mode, is also affected by the SiCH<sub>3</sub> rocking mode corresponding to that of the A' species for the trans form, which may be at a slightly higher frequency than the unaffected frequency for the CH<sub>2</sub> rocking mode. Therefore, as the pushing-up effect of the SiH<sub>2</sub> twisting mode may be cancelled by the pushing-down effect of the SiCH<sub>3</sub> rocking mode, the CH<sub>2</sub> rocking mode can be found around the unaffected frequency. For CH<sub>3</sub>-CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>, though the SiCH<sub>3</sub> rocking mode in question exists at a higher frequency with a diminishing influence on the CH2 rocking mode, the SiD2 scissoring and C-Si stretching modes corresponding to those of the A' species for the trans form appear anew at the lower frequencies and push the CH<sub>2</sub> rocking mode up to a higher frequency.

Therefore, the CH<sub>2</sub> rocking mode for the gauche form is found at a lower frequency than that for the trans form for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, while it is found at a higher frequency than that for the trans form for CH<sub>3</sub>-CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>.

In the region from 350 to 650 cm<sup>-1</sup>, two pairs of the bands for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub> and three pairs of the bands for CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub> are observed in the liquid state. Since the symmetric C–Si stretching mode is found at 659 cm<sup>-1</sup> for dimethylsilane, the pairs around 620 and 638 cm<sup>-1</sup> can be assigned to the symmetric C–Si stretching modes for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub> respectively, while the lower-frequency bands in each pair vanish in the crystalline state and belong to the

gauche isomers.<sup>7)</sup>

The SiH<sub>2</sub> and SiD<sub>2</sub> twisting modes can be expected to be very weak bands, since the corresponding band is infrared-inactive because of the symmetry for dimethylsilane. Therefore, another pair of bands, that around 490 cm<sup>-1</sup> for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub> can easily be assigned to the SiH<sub>2</sub> rocking mode; this pair corresponds to the pair around 402 cm<sup>-1</sup> for CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>-CH<sub>3</sub>.

The pair around  $566~\rm cm^{-1}$  for  $\rm CH_3CH_2SiD_2CH_3$  can be assigned to the  $\rm SiD_2$  wagging mode. As for the  $\rm SiH_2$  and  $\rm SiD_2$  twisting modes, there are no distinct pairs of bands except for the very weak bands in the region expected from the calculations.

For CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>, a weak band at 577 cm<sup>-1</sup>, which is found in both the liquid and crystalline states and which corresponds to a medium Raman band at 590 cm<sup>-1</sup>, may be assigned to the SiH<sub>2</sub> twisting mode for the *trans* isomer, while the mode for the *gauche* isomer cannot be found in the expected region around 620 cm<sup>-1</sup> where the bands assigned to the C–Si stretching mode are also present.

For CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub>, the weak band at 501 cm<sup>-1</sup>, existing only in the liquid state, may be assigned to the SiD<sub>2</sub> twisting mode for the *gauche* isomer, while the mode for the *trans* isomer cannot be found in the expected region (around 450 cm<sup>-1</sup>).

In the region below 350 cm<sup>-1</sup>, two skeletal bending and three torsional modes are expected. The Raman bands at 298 and 167 cm<sup>-1</sup> in the liquid state, and the infrared bands at 301 cm<sup>-1</sup> in the crystalline state and at about 170 cm<sup>-1</sup> in the gaseous state, are observed for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub>. These bands may be assigned to the C–C–Si and C–Si–C bending modes for the *trans* isomer.

In Table 3, the observed and calculated frequencies fot the mixture of CH<sub>3</sub>CH<sub>2</sub>SiHDCH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>-CH<sub>3</sub>, and CH<sub>3</sub>CH<sub>2</sub>SiD<sub>2</sub>CH<sub>3</sub> are shown as a basis for finding the vibrational assignments for CH<sub>3</sub>CH<sub>2</sub>SiHD-CH<sub>3</sub>, especially in the range from 250 to 900 cm<sup>-1</sup>, where the bands sensitive to the molecular forms of

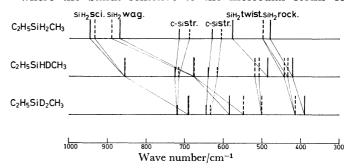



Fig. 2. Observed frequencies for the SiH<sub>2</sub>, SiD<sub>2</sub>, SiHD deformation modes and the C-Si stretching mode. ——: the spectra which persist in the crystalline state. : the spectra which disappear in the crystalline state.

<sup>7)</sup> In the previous note (Ref. 1), the pair around 620 cm<sup>-1</sup> for CH<sub>3</sub>CH<sub>2</sub>SiH<sub>2</sub>CH<sub>3</sub> has been erroneously assigned to the SiH<sub>2</sub> wagging mode from the reported assignments for dimethylsilane given by Ball *et al.* (D. F. Ball, P. L. Goggin, D. C. McKean, and L. A. Woodward, *Spectrochim. Acta*, **16**, 1358 (1960).) However, the normal vibration calculation indicates the present assignment is correct for both dimethylsilane and ethylmethylsilane.

the isomers can be expected to exist. A comparison of the spectra of the mixture with the other species easily leads to the vibrational assignments for CH<sub>3</sub>CH<sub>2</sub>-SiHDCH<sub>3</sub> in this region. The correlation of the spectra for the three isotopic species is found to be excellent, as is shown in Fig. 2, where only the SiH<sub>2</sub> hydrogen deformation and C–Si stretching modes are shown. The results of the normal vibration calculations also prove the correctness of the present assignments, as is shown in Table 7.

So far, the vibrational assignments have been made without any impropriety on the assumption of the co-existence of the *trans* and *gauche* isomers in the

gaseous and liquid states. In general, the calculated frequencies can be considered to reproduce the observed frequencies well, though most of the force constants are transferred from those for other, similar molecules without any adjustments. Therefore, the co-existence and the molecular forms of the isomers can be regarded as also proved by the present normal vibration calculations.

The authors wish to express their thanks to Professor Tatsuo Miyazawa of Osaka University and to the staff of his research group for allowing us to use their instruments and for their technical assistance.